100  EremeEnTarY FUNCTIONS CHAP, 3

3. Use definition (1), Sec. 32, of z¢ to show that (—1+ V3= Zﬁ.

4. Show that the result in Exercise 3 could have been obtained by writing
(@ (—=1+~3P 2 =[-1+ /312 and first finding the square roots of —1 + NETH
®) (—1+ +/3)¥2 = [(—1+ +/3i)*2 and first cubing —1 + NETS

5. Show that the principal nth root of a nonzero complex number z;, defined in Sec. 8, is
the same as the principal value of zé/ ", defined in Sec. 32.

6. Show that if z # 0 arid @ is a real number, then [2°| = exp{a In |z]) = iz|%, where the
principal vatue of |z is to be taken.

" Letc=a -+ bi be a fixed complex number, where ¢ % 0, £1, 42, ..., and note that i¢
is multiple-valued. What restriction must be placed on the constant ¢ so that the values
of }i€| are all the same?

Ans. c 1s real

8. Let ¢, d, and z denote complex numbers, where z # 0, Prove that if all of the powers
involved are principal values, then

@1/zf=z"% BE=r"nr=12..%
(©) 78 =27, (=0

9. Assuming that f'(z) exists, state the formula for the derivative of D,

33. TRIGONOMETRIC FUNCTIONS

Euler’s formula {Sec. 6) tells us that

¢ —cosx +isinx and e F=cosx—isinx
for every real number x, and it follows from these equations that
¢* — ¢ * =2isinx ‘and &F + e ¥ =2cosx.
That is,
) X — e-—ix ei.r + e—ix
siny=——— and (¢OSX=—TF"——
: 2i 2 _
It is, therefore, natural to define the sine and cosine functions of a complex variable z
as follows:
eiz — e—iz eiz + e-:‘z
cosz = ——.
2 2
These functions are entire since they are linear combinations {Exercise 3, Sec. 24)
of the entire functions ¢/* and e~'2. Knowing the derivatives of those exponential
functions, we find from equations (1) that

{1 sinz =

. d .
) — sinz=c¢osz, —COSZ=—SINZ.
dz dz
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Tt is easy to see from definitions (1) that
(3) sin(—z)=—sinz and cos(—z)=cosz;

and a variety of other identities from trigonometry are valid with complex variables.

EXAMPLE. In order to show that
4) 2 sin 7, cos z; =sin(z; + z5) + sin(z, — 22),

using definitions (1) and properties of the ¢xponential function, we first write

. ele __ e—iz; eiZQ _ e—-—iZg
2sinzyjcoszy =2 - .
2i 2

Multiplication then reduces the right-hand side here to

lai+z) _ p—iluta) . =) _ p—ilzi—z2)

2i 2 '

or

sin(z; + z2) + sin{z; — z);

and identity (4) is established.

Identity (4) leads to the identities (see Exercises 3 and 4)
()] sin{zy + z3) = sin z; Cos z, + €OS 7| 8in 25,
(6) cos(z| + Z3) = €08 Z) €OS Z5 — sin z; sin Z5;

and from these it follows that

(7) sin? z +cos?z=1,
(8) ‘ sin2z =2sinzcosz, cos2z = cos’z — sinz,
(9 sin(z + %) =cos z, sin(z - g) = — CO08 7.

When y is any real number, one can use definitions (1) and the hyperbolic
functions

. P ¥ -
sinh y = £2° " and cosh y= gte’
2 2
from calculus to write

(10) sin(iy)=isinhy and. cos(iy)=coshy,
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The real and imaginary parts of sin z and cos z are then readily displayed by writing
z;=x and z, = iy in identities (5) and (6):

(11y sihz:sinxcoshy+icosx sinh vy,
(12) cos 7 = cos x cosh y — { sin x sinh y,

where z = x + iy.

A number of important properties of sin z and cos z follow immediately from
expressions (11) and (12). The periodic character of these functions, for example, is
evident:

(13) sin(z + 27) =sinz, sin(z + )= —sinz,
(14) cos(z+2m)=cosz, cos(z+ )= —cosz.

Also (see Exercise 9}

as) - isin z[% = sin? x + sinh? y,

(16) lcos z)? = cos® x + sinh? y.

Inasmuch as sinh y tends to infinity as y tends to infinity, it is clear from these two
equations that sin z and cos z are not bounded on the complex plane, whereas the
absolute values of sin x and cos x are less than or equal to unity for all values of x.
(See the definition of boundedness at the end of Sec. 17.)

A zero of a given function f(z) is a number zq such that f(z,) = 0. Since sin z
becomes the usual sine function in calculns when z is real, we know that the real .
numbers z =nm (n =0, 1, £2, ., ) are all zeros of sin z. To show that there are no
other zeros, we assume that sin z = 0 and note how it follows from equation (15) that

sin® x + sinh? y = 0.
Thus
sinx=0 and sinhy=0.
Evidently, then, x = nm (n =0, £1, 42, ...) and y = 0; that is,

(17 sinz=0 ifandonlyif z=nr (n=0,%l1, £2,..)).

. n
COS Z = — 81N Z_E P

according to the second of identities (9),

Since

(18) cosz=0 ifandonlyif z= izf- +nm(n=0,%1, £2,..).

So, as was the case with sin z, the zeros of cos z are all real.
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The other four trigonometric functions are defined in terms of the sine and cosine
functions by the usual relations:

: sin z cos z
(19) tanzg = ——, cotz=—,
cos z 510 Z
. 1 1
i) secz=——, cCSCZ=—.
cos z sin z

Observe that the quotients tan z and sec z are analytic everywhere except at the
singularities (Sec. 23)

c=Ttnm (=032,

which are the zeros of cos z. Likewise, cot z and ¢sc z have singularities at the zeros
of sin z, namely

I=nx {(n=0,£1,£2,,..}.

By differentiating the right-hand sides of equations (19) and (20), we obtain the
expected differentiation formulas

d .
(21) = tan z = sec? zZ, icotz:—cscz z,
dz dz
o d d
(22) — fecz=secztanz, — CS8CZ = — CSC 2z COt Z.
dz az

The periodicity of each of the trigonometric functions defined by eguations (19) and
(20) follows readily from equations (13) and (14). For example,

(X)) tan(z + ) =tan z.

Mapping properties of the transformation w = sin z are especially important in
the applications later on. A reader who wishes at this time to learn some of those
properties is sufficiently prepared to read Sec. 89 (Chap. 8), where they are discussed.

EXERCISES

1. Give details in the derivation of expressions (2), Sec. 33, for the derivatives of sin z and
COS Z.

2. Show that Euler’s formula (Sec. 6) continues to hold when # is replaced by z:
e =cosz+isinz.

Suggestion: To verify this, start with the right-hand side,

3. In Sec. 33, interchange 7 and z; in equation (4) and then add corresponding sides of the
resulting equation and equation (4) to derive expression (5) for sin(zy + z3).
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4. According to equation (5) in Sec. 33,
sin(z + z7) = sin z cos Z, + cOS Z 8in 2.

By differentiating each side here with respect to z and then setting 2 = 2;, derive expres-
sion (6) Tor cos(z| + z7) in that section.

5. Verify identity (7) in Sec. 33 using
{a) identity (6) and relations (3) in that section;
(b) the lemma in Sec. 26 and the fact that the entire function

f(z)=sin2z+cbszz—1

has zero values along the x axis.

6. Show how each of the trigonometric identities (8) and (9) in Sec. 33 follows from one '
of the identities {3) and (6) in that section.

7. Use identity (7) in Sec. 33 to show that

(@)1 +tan?z=sec?z;  (b) 1+cot?z=csc?z.

=

Establish differentiation formulas (21) and (22) in Sec. 33.

9, In Sec. 33, use expressions (11) and (12) to derive expressions (15) and (16) for [sin 2|
and |cos z|*.
Suggestion: Recall the identities sin? x + cos? x = 1 and cosh? y —sinh? y = L.

10. Point out how it follows from expressions (15) and (16) in Sec, 33 for |sin z|? and |cos zI2
that

{a) |sin z| = |sin x|; {(h) |cos z| > |cos x|.
11. With the aid of expressions (15) and (16) in Sec. 33 for |sin z|? and jcos z|2, show that
(a) |sinh y¥| < |sin 2] < cosh y; (b} |sinh y| < |cos z| < cosh y.

12. (a) Use definitions (1), Sec. 33, of sin z and cos z to show that

2 sin(z + z,) sinfz; — z5) = cos 2z; — cos 225,

(b) With the aid of the identity obtained in part (a), show that if cos z; == cos z,, then at
least one of the numbers z; + z; and z; — z5 is an integral multiple of 2,

13. Use the Cauchy—Riemann equations and the theorem in Sec. 20 to show that neither sin z
nor cos z 1§ an analytic function of 7z anywhere.

" 14. Use the reflection principle (Sec. 27) to show that, for all z,
(@) sinz = sin g, (b)_cos 7 ==COS T

15. With the aid of exp_ressions (11) and (12) in Sec. 33, give direct verifications of the
relations obtained in Exercise 14.
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16. Show that
(@) cos(iz}) =cos(iz) forallz;
(b) sin(izy =sin(i7) ifandonlyif z=nmi (n=0,=£1,£2, ., ).

17. Find all roots of the equation sin z = cosh 4 by equating the real parts and the imaginary
parts of sin z and cosh 4.

Ans. (% + 2mr) +4i (n=0, %1, +2, .. ).

18. Find all roots of the equation cos z = 2.

Ans. 2nm +icosh™ 2, 0r2nw £iIn2 +/3) (n=0, £1, £2,...).

34. HYPERBOLIC FUNCTIONS

The hyperbolic sine and the hyperbolic cosine of a complex variable are defined as
they are with a real variable; that is,

I __ 2 Z -z
(1 sinhz=e—ze—-, coshz:i.

Since €® and e~ are entire, it follows from definitions (1) that sinh z and cosh z are
entire. Further.r_nore,

d
(2) — sinh z =cosh z, -'-j-— cosh z = sinh z.
: dz dz ‘

Because of the way in which the exponential function appears in definitions (1)
and in the definitions (Sec. 33)

sin ——---e[z - co -——elz te
7= - , 57 =
20 . 2

of sin z and cos z, the hyperbolic sine and cosine functions are closely related to those
trigonometric functions:

(3) —isinh(iz) =sinz, cosh(iz) =cosz,
(3] —isin(iz) =sinhz, cos(iz) = coshz.

~ Some of the most frequently used identities involving hyperbolic sine and cosine
functions are

(5) sinh(—z) = —sinhz, cosh(~z) = cosh z,
(6) cosh? z — sinh? 7z = 1,
(7T} sinh(z; + zz) = sinh z; cosh z, + cosh zy sinh z,,

(&) cosh(z) + z3) = cosh z; cosh z, + sinh z; sinh z,



